

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

ET - electro-thrust cylinder

Motion, positioning, material feed and setting

ENGINEERING YOUR SUCCESS.

The ET Electro Thrust Cylinder

Contents	The ET Electro Thrust Cylinder2
	Product description3
	Product design4
	IP65 rating
	Special designs
	Technical Data6
	Permissible side loads
	Thrust force factor and breakaway torque10
	Transmissible torques in parallel drive mounting
	Nominal lifetime
	Relubrication14
	Dimensions
	Possible motor mounting options17
	Accessories18
	Configuration of the thrust rod
	Mounting options
	Initiators / limit switches
	Order code 26

The ET electro-thrust cylinder: Motion, positioning, material feed and setting

Product description

Typical fields of application:

The electro thrust cylinder closes the gap between pneumatic and hydraulic drives. Together with the wide choice of accessories, it offers many possibilities in the field of:

⇒ Material handling and feed systems,

- wood and plastic working industry
- vertical actuators for loading machine tools
- in the textile industry for tensioning / gripping textile fabrics
- in the automotive industry for transporting and feeding components
- ⇒ Testing equipment and laboratory applications
- ⇒ Valve and flap actuation

Performance / Technical data:

For precise motion, positioning, setting and actuating, the ET offers:

- High mechanical efficiency up to 90%
- Stroke up to 2400mm
- High traction/thrust force up to 44500N
- Repeatability ± 0.07mm (up to ± 0.01mm)
- Speeds up to 1.3m/s
- Timing belt drive (with parallel motor mounting) also available with transmission ratios
- Screw pitch from 5 to 50mm/rev
- ◆ 5 different sizes + ETV32 and ETV100 (V=longer service life)
- Available with servo or stepper motor drive
- IP54 Standard (Option IP65)

The technology:

⇒ Advantages of the ballscrew drive

- Smooth operation
- Low wear
- Low maintenance
- High efficiency
- long life
- High precision even at low speed, as hardly any stick-slip effect occurs
- High speeds are possible due to high efficiency and low heat generation

Direct drive

Parallel drive

Product design

(1) Ballscrew:

 \Rightarrow As a feed unit, a high-quality precision class C7 ballscrew is used.

⇒ The balls between spindle and nut ensure a low frictional resistance. This ensures an especially smooth operation over the entire speed range, high lifetime and an excellent efficiency. Smallest travels are possible due to a low stick-slip effect.

(2) Timing belt transmission:

- ⇒ The slip- and maintenance free timing belt transmission (only with parallel drive) has an excellent efficiency.
- \Rightarrow The transmission ratios 1:1, 1:1.5, 1.51 and 2:1 are available.

(3) Linear sliding bearing:

⇒ The extra long cylinder rod bearing allows high side load forces. A wiper ring prevents the ingress of external contamination under normal conditions. In the event of fine dust, a high amount of dirt as well as muds and liquids, special sealing is required, which is available on request.

(4) rear screw bearing:

The screw bearing on the drive side accepts high axial and radial forces. It consists of two interlinked angualr contact ball bearings which accept the thrust and traction forces of the cylinder.

(5) Front screw bearing:

⇒ The front screw support bearing is supported by a polymer sliding bearing. This eliminates vibrations and run-out. This increases the precision, dynamic behaviour and lifetime of the screw.

(6) Anti-rotation device

⇒ The integrated anti-rotate mechanism, with three Nylatron NS wheels prevents the rod-rotation and can absorb minor torsional movements.

(7) Permanent magnet

⇒ All electro thrust cylinders are equipped with a permanent magnet integrated into the screw nut. The permanent magnet actuates the sensors, which can be mounted in the longitudinal grooves of the cylinder body.

IP65 rating

The IP65 version is intended for the use under difficult environmental conditions, if the drives must be cleaned with liquids or for use in dusty or wet environments. Depending on the medium, the sealing system might need adaption. It is therefore necessary, to contact us to discuss the application.

- \Rightarrow Available for the sizes ET_32, 50, 80 and 100.
- ⇒ Polyester/polyurethane cylinder body
- ⇒ Special dual piston rod seal
- ⇒ All external fixnings in corrosin-resistant materials
- ⇒ Accessories are available in corrosion resistant steel as an option.
- ⇒ Use of the standard position sensors

Special designs

The following special features are available on request:

- ⇒ blow valve
- ⇒ Oil splash lubrication of the screw for highduty applications
- ⇒ Customized mountings and rod ends
- ⇒ Mounting of customer motors
- ⇒ Preparation of the cylinder for use under aggressive environmental conditions
- ⇒ Overlong thrust rod
- ⇒ Polished thrust rod
- ⇒ Thrust rod hard-chrome plated
- ⇒

Technical Data

Cylinder size	Unit	ET	[_32	ETV	/32		ET_50			ET_80	
Туре		M05	M10	M05	M10	M05	M10	M16	M05	M10	M25
C											
Screw											
Screw pitch	mm	5	10	5	10	5	10	16	5	10	25
Screw diameter	mm		12	12	2		16			25	
Travels, speeds a	nd acce	eleratio	1S ¹								
Available strokes	mm		nuous, 50-750	contin from 5			ontinuous om 50-100			continuous om 100-15	
Max. permissible speeds	s at a strok	e =									
50-300mm	mm/s	420	840	420	840	320	730	1170	270	540	1340
450mm	mm/s	420	840	420	840	320	730	1170	270	540	1340
600mm	mm/s	270	540	270	540	320	630	1000	270	540	1340
750mm	mm/s	190	380	190	380	230	450	720	270	540	1340
1000mm	mm/s	-	-	-	-	150	300	470	210	420	1040
1250mm	mm/s	-	-	-	-	-	-	-	150	290	720
1500mm	mm/s	-	-	-	-	-	-	-	110	210	530
Max. acceleration	m/s ²	3	6	3	6	3	6	10	3	6	10
Forces ²											
Max. traction/thrust force	N	e	600	60	0		3300			8300	
Weight and mass	s mome	nts of ir	ertia								
Weight of base unit	kg	1	1.3	1.	2		2.3			6.8	
with zero stroke	Ng	-		1.	۷		2.5			0.0	
Weight of additional length	kg/m		3	3			6			10	
Mass moment of inertia	J ₀ refers to	o the drive	shaft withou	t stroke for i=	1, for i ≠ 1	applies: J	total=[J ₀ (i=	1)+J _H (i=	1)] / i²		
Parallel drive	kgmm ²	4.2	4.4	3.8	4.1	55.4	57.6	60.5	128.9	135.3	142.8
Direct drive	kgmm ²	2.5	2.7	2.4	2.5	12.9	15.8	18.7	74.8	81.1	88.7
Mass moment of inertia	J _H refers t	o the drive	shaft per me	eter of additio	nal length f	or i=1;					
Drive parallel/direct	kgmm²/ m	16.6	18.5	16.6	18.5	51.6	54.0	56.8	302.0	306.0	332.0
Precision and ba	cklash										
Repeatability	mm					± 0.0)7				
Backlash	mm			0.02 with	inline drive			and reve	rse drive		
Efficiency						,					
Direct drive	0/					00					
Parallel drive	% %					90 81					
	90					01					
ratios						P.		、 、			
				1	1:1 (i 5:1 (paralle.		rallel drive				
ratios					2:1 (parallel						
						transmissi					

 $^1\,$ Please contact us if you wish to work at higher speeds or at operation times >80%!

² Values refer to the maximum permissible cylinder load. Please do also respect the "life time curve"! With parallel drive, the maximum thrust/traction force is limited by the timing belt, see "transmissible torques at parallel drive"

ET_32, ETV32, ET_50, ET_80 available for servo motor or stepper motor mounting

Cylinder size	Unit													
Туре		M05	M10	M20	M40	M05	M10	M05	M10	M20	M50			
Screw														
Screw pitch	mm	5	10	20	40	5	10	5	10	20	40			
Screw diameter	mm		4	0			40			50				
Travels, speeds a	and acceler	ations ¹												
Available strokes	mm		cor	ntinuous,f	rom 100-	1500		C	ontinuous,	from 100-2,	400			
Max. permissible speed	at stroke =													
50-300mm	mm/s	170	340	670	1340	170	340	140	270	540	1340			
450mm	mm/s	170	340	670	1340	170	340	140	270	540	1340			
600mm	mm/s	170	340	670	1340	170	340	140	270	540	1340			
750mm	mm/s	170	340	670	1340	170	340	140	270	540	1340			
1000mm	mm/s	170	340	670	1340	170	340	140	270	540	1340			
1250mm	mm/s	170	340	670	1340	170	340	140	270	540	1340			
1500mm	mm/s	160	310	610	1220	160	310	140	270	540	1340			
1600mm	mm/s	-	-	-	-	_	_	140	270	540	1340			
1800mm	mm/s	_	_	_	_	_	_	140	270	530	1330			
2000mm	mm/s	_	_	-	_	_	_	120	230	450	1100			
2200mm	mm/s	_	_	-	_	_	_	100	190	380	950			
2400mm	mm/s	-	-	-	_	_	_	90	170	330	820			
Max. acceleration	m/s ²	3	6	6	10	_	_	3	36	6	10			
Forces ²	iiiy S	5	U	U	10			5	50	Ū	10			
Torces														
Max. traction/thrust force	N		212	200		2:	1200		4	4500				
Weight and mas	s moments	of inert	tia											
Weight of base unit with zero stroke	kg		14	.8		1	6.6			30				
Weight of additional length	kg/m		2	0			20			37				
Mass moment of inertia	J ₀ refers to the	drive shaf	t without	stroke fo	r i=1, for	i≠ 1 ap	plies: J _{total} =	[J₀(i=1)+J⊦	(i=1)] / i ²					
Parallel drive	kgmm ²	708.3	749.2	818.3	918.9	866.9	947.9	3470.1	3484.7	3543.2	3952.7			
Direct drive	kgmm ²	401.8	442.7	517.7	612.4	442.1	523.1	3364.4	3379.0	3437.5	3847.1			
Mass moment of inertia	J _H refers to the	drive shat	ft per me	ter of add	litional le	ngth for i	=1							
Drive parallel/direct	kgmm²/m	1978.0	1986.0	2016.4	2138.0	1978.0	1986.0	4821.6	4836.4	4895.7	5312.0			
Precision and ba	cklash													
Repeatability	mm						± 0.07							
Backlash	mm			0.02	with inline	drive/0.0	025 with pa	rallel and r	everse driv	<i>r</i> e				
Efficiency														
Direct drive	%						90							
Parallel drive	% 81													
ratios														
ratios	1:1 (inline or parallel drive); 1.5:1 (parallel drive-transmission to slow); 2:1 (parallel drive-transmission to slow)													

² Values refer to the maximum permissible cylinder load. Please do also respect the "life time curve"! With parallel drive, the maximum thrust/traction force is limited by the timing belt, see "transmissible torques at parallel drive"

ET_100, ETV100, ET_125 available for operation with servo motor drive

Technical data with safety factor S=1 taken into consideration. Temperature range from 0°C to +60°C. Max. permissible air humidity: 90% - the dew point may not be reached at the cylinder! The technical data apply under normal conditions and only for the individual operating and load mode. In the case of compound loads, it is necessary to verify in accordance with normal physical laws and technical standards whether individual ratings should to be reduced. In case of doubt please contact Parker Hannifin.

Permissible side loads

The electro thrust cylinder disposes of a generously dimensioned cylinder rod bearing together with 3 Nylatron NS wheels which prevent the rod rotation. Thanks to this system, the cylinder is able to accept a certain side load.

Please note that the load bearing capacity increases with a longer stroke, as the distance between the bearings becomes longer. In order to reach the required load values in a given application, it can be useful to select a cylinder with a longer stroke than necessary for the application.

Example:

An ET_50 with 200mm stroke can bear a lateral force of 72N in fully extended state. An ET_50 with 300mm stroke can however, if only 200mm are extended, accept a lateral force of 166N. If your application requires an even higher load bearing capacity, you can fortify the cylinder with the **rod guiding system** (see page 20) available as an option (not for ETB125).

Lateral load – profile orientation

1: Sensor mounting grooves: on ET_32, 50 and 80 only on one side, on ET_100 and ETB125 on all sides.

2: Thread for foot mounting

- F: Lateral force
 - with standard and B profile orientation the lateral force is accepted by two rollers, with A and C profile orientation, only by a single roller.
 - If the lateral force F does not apply, as in the drawing, from above or below but from the right or the left, the opposite of the above description applies!

The profile orientation of ET_32, 50 and 80 does also determine the mounting position of the sensors and does therefore also influence the mounting position of the motor. At the same time, the profile orientation defines the position of the lubrication bore.

Lateral forces may reduce the lifetime of the cylinder. If you want to exploit the maximum possible lateral force at 100%, you will have to reduce the duty cycle to 40% or you can only exploit 40% of the max. possible lateral force if you want to operate at a 100% duty cycle.

 1000 1200

Extended Length [mm]

1600 1800 2000 2200

The curves given here are only valid for a profile orientation of 12 hrs (standard) and 6 hrs (B), if the lateral force applies from above or from below. With profile orientation 3 hrs and 9 hrs (A and C), the permissible lateral load is halved!

Thrust force factor and breakaway torque

The following table shows the resulting thrust or traction per 1Nm of torque at the screw, taking the efficiency, belt transmission ratio and screw pitch into consideration. The table can be used for a rough calculation of the drive dimensioning. For precise drive dimensioning, the mass moment of inertia of the screw must be taken into consideration! Please do also account for transmittable torques in parallel drives (see page 11) and other limit values

The "L" or "P" stands for the motor mounting L = direct (in-line), P = all parallel or reverse motor positions;"**A**" stands for a ratio of i = 1:1, "**B**" for i =1.5:1, "**D**" for i = 2:1, **Z**" for i = 1:1.5.

Example: ET_32 (size) M04 (screw pitch) L (motor mounting) A (ratio)

	Thrust force factor [N/Nm]	Breakaway torque for the drive [Nm]
ET_32		
ET 32-M05LA	1130	0.2
ET 32-M05PA	1015	0.2
ET 32-M05PZ	675	0.4
ET 32-M10LA	565	0.3
ET_32-M10EA	510	0.3
ET_32-M10PA		
ET_50	335	0.4
ET_50	1120	0.4
	1130	0.4
ET_50-M05PA	1015	0.4
ET_50-M05PB	1525	0.3
ET_50-M05PD	2035	0.2
ET_50-M10LA	565	0.5
ET_50-M10PA	510	0.6
ET_50-M10PB	765	0.4
ET_50-M10PD	1015	0.3
ET_50-M16LA	353	0.5
ET_50-M16PA	317	0.6
ET_50-M16PB	476	0.4
ET_50-M16PD	635	0.3
ET_80		
ET_80-M05LA	1130	0.5
ET_80-M05PA	1015	0.6
ET_80-M05PB	1525	0.4
ET_80-M05PD	2035	0.3
ET_80-M10LA	565	0.6
ET_80-M10PA	510	0.7
ET_80-M10PB	765	0.4
ET_80-M10PD	1015	0.3
ET 80-M25LA	225	0.9
ET 80-M25PA	205	1.0
ET 80-M25PB	305	0.7
ET 80-M25PD	405	0.5
 ET_100		
ET_100-M05LA	1130	0.5
ET 100-M05PA	1015	0.6
ET 100-M10LA	565	0.6
ET 100-M10PA	510	0.7
ETB100-M20LA	283	0.7
ETB100-M20PA	255	0.8
ETB100-M40LA	140	0.9
ETB100-M40PA	125	1.0
ETB125	125	1.0
ETB125-M05LA	1130	2.6
ETB125-M05PA	1107	2.9
ETB125-MI05PA	565	3.0
ETB125-M10EA	508	3.3
ETB125-M10PA ETB125-M20LA	283	3.3
ETB125-M20PA	283	
ETB125-M20PA ETB125-M50LA		3.8
	113	3.8
ETB125-M50PA	102	4.2

Transmissible torques in parallel drive mounting

The table shows the torques that can be transmitted by the timing belt. Please respect in addition the maximum permissible traction/thrust force: ET_32, 50, 80 (see page 6), ET_100, ETB125 (see page 7). For the conversion, you can use the **thrust force factor table** (see page 10). "L" or "P" stands for the motor mounting L = direct (in-line), P = all parallel or reverse motor positions;"A" stands for a ratio of i = 1:1, "B" for i = 1.5:1, "D" for i = 2:1, Z" for i = 1:1.5.

The

									М	otor	· / g	ear	type	9									trar	nsmissi	ble mo	otor to	rque [l	Vm]	
			Stepper motor Servo motor Motor code Motor code												Gear	code	9		Speed at the drive shaft [rpm]										
			20	30	40	37	47	57	67	77	87	J4	J5	J6	J7	P3	P4	P5	P7	N6	N8	100	500	1000	1500	2000	2500	3000	3300
ET_3	2	PA	Х				Х															1.68	1.35	1.09	0.92	0.84	0.75	0.68	0.65
		ΡZ	Х				Х															1.22	0.99	0.82	0.72	0.63	0.57	0.53	0.50
ET_5	0	PA	Х			Х																2.80	2.19	1.73	1.42	1.27	1.12	1.01	0.99
		PB	Х																			1.93	1.55	1.25	1.04	0.94	0.84	0.76	0.73
		PD	Х																			1.43	1.16	0.94	0.80	0.73	0.66	0.60	0.57
		PA		Х				Х	Х											х		3.64	2.93	2.39	2.10	1.85	1.67	1.53	1.38
		PB		Х																		2.40	1.96	1.62	1.44	1.28	1.17	1.08	0.99
ET_8	0	PA		Х																		7.07	5.55	4.39	3.77	3.22	2.84	2.52	2.20
		PB		Х																		5.08	4.04	3.25	2.83	2.46	2.21	2.00	1.78
		PD		Х																		3.64	2.93	2.39	2.10	1.85	1.67	1.53	1.38
		PA			Х	Х			Х	Х		Х				х				х	x	13.4	10.6	8.43	7.16	6.11	5.40	4.79	4.18
		PB			Х	Х			Х	Х						x				х		9.66	7.69	6.18	5.38	4.68	4.19	3.79	3.38
		PD				Х			Х											х		6.91	5.57	4.54	4.01	3.51	3.18	2.91	2.65
ET_1	00	PA								Х	Х		Х	Х			х	х			х	61.2	37.1	32.6	30.4	28.5	27.6	25.9	24.8
ETB1	25	PA									Х			Х	Х			х	х			91.0	81.0	77.0	72.0	71.0			

Motor / gear codes: Order code (see page 26)

Nominal lifetime

Nominal lifetime of ballscrew and rear screw bearing

The lifetime depends strongly on the degree of power exploitation and on impermissible operating states occurring - even if only for a short time -. The lifetime of the stripper depends strongly on the frequency and speed of motion, especially in connection with lateral forces (danger of heating) as well as the amount of contamination.

Prereauisite:

- ⇒ Bearing and screw temperature between 20°C and 40°C
- ⇒ no affectation of the lubricant, for example by external particles
- ⇒ lubrication conform to the specifications
- ⇒ the given values for thrust force, speed and acceleration must be adhered to at any rate.
- ⇒ no contact to mechanical end stops (external or internal) and no other abrupt loads
- \Rightarrow no lateral forces are being applied to the cylinder rod
- ⇒ no short stroke (stroke smaller than 2.5 x screw pitch)
- ⇒ no vibration at standstill or at very low speed
- ⇒ no high exploitation of several power features at a time (for example maximum speed or thrust force)

only under these circumstances, the service life corresponds to the nominal lifetime

Determination of the medium dynamic axial load:

If the load on the ballscrew is varying, the lifetime must be determined with the aid of the medium dynamic axial load. The medium dynamic axial load is determined as follows in the event of cascaded load changes:

$$F_{m} = \sqrt[3]{\frac{1}{L} * (Fa_{1}^{3} * s_{1} + Fa_{2}^{3} * s_{2} + ... + Fa_{n}^{3} * s_{n})}$$

= medium dynamic axial load [N] = varying load [N] Fan * = travel under a defined load F_n [mm] s_n * = total travel [mm]

* Forces and travels must be entered as absolute values.

If you need the lifetime as the number of possible cycles, just divide the lifetime in kilometers by twice the stroke traveled.

The application factor fw

The application factor has a strong influence on the lifetime of a screw.

The application factor can be roughtly determined with the aid of the following table:

Fm

| *

L	oad from vibration, shock, temperature, dirt	Screw speed	fw
lig	ght	n < 500 rpm	1.0 - 1.5
Μ	1edium	500 < n < 2000 rpm	1.5 - 2.0
h	igh	2000 < n < 3300 rpm	2.0 - 3.5

Lifetime calculation:

$$Ln (fw) = \frac{Ln(fw=1.0)}{fw^3}$$

Ln: Nominal lifetime Ln(fw=1.0): see lifetime diagrams fw: application factor

Lifetime diagrams

The screw lifetime is calculated with the factor fw=1.0.

Lifetime of an ET_32 screw and fixed bearing

Lifetime of an ET_50 screw and fixed bearing

20000

Designation: 5 = 5mm, 10 = 10mm screw pitch etc.

Relubrication

Lubrication interval for the ballscrew drive

All sizes have a lubrication bore in the cylinder body (in the middle of the aluminium profile), which permits to lubricte the screw nut.

On the ET_32, 50 and 80 cylinders, this bore can be found at the same side as the sensor mounting grooves. Free access to this bore - even after integration of the cylinder into a system - can be ensured by choosing the corresponding **profile orientation** (see page 8).

The necessary lubrication intervals depend on the application.

(1): Lubrication bore LP: Length of profile

Greatest interval with an application factor of fw = 1.0:

⇒ 12 months or 350km, depending on which value is first reached.

Lubrication intervals for the screw bearing

The lubrication interval ist half the grease service life:

ETV100 - M05 (increased service life)	Lubrication after approx. 4000km
ETV100 – M10 (increased service life)	Lubrication after approx. 7000km
ETB125 - M05	Lubrication after approx. 2000km
ETB125 - M10	Lubrication after approx. 3000km
ETB125 - M20	Lubrication after approx. 6000km
ETB125 - M50	-no lubrication necessary up to 2000km
ET_32 to ETB100 are not lubricated at the screw s	upport bearing.

Dimensions

Electro thrust cylinder – in-line motor mounting

Electro thrust cylinder – parallel motor mounting

Stated in mm

ET (inline/parallel)

	A1	A2	AM	BG	BH	DD	E	F	זן:**	КК	KV	ØMM	TG	KW	N1	FB	VD	ØBB
ET_32	14	14	22	14,5	9	M6x1.0 (1)	46.5	16	M6x1.0	M10x1.2 5	10	18	32.5	5	106.4	37	4	30
ET_50	16	16	32	16	12.7	M8x1.25	63,5	24	M8x1.25	M16x1.5	17	25	46.5	6.5	139.4	39	4	40
ET_80	21	21	40	16	17.5	M10x1.5	95.3	30	M10x1.5	M20x1.5	22	35	72	10	191.3	57	5	45
ET_100	27.5	27.5	54	16	24	M12x1.75	114	50	M10x1.5	M27x2.0	27	50	89	13	254	79	4	55
ETB125	42.4	33	72	16	24	M16x2.0	139.7	64	M12x1.7 5	M36x2.0	41	70	110	13	334.5	127.1	7	60

** Thread "JJ" is not available in IP65 version for ET_32 and ET_50!

(1) If you wish to mount a component at the front screws (with thread II = M6x1), please provide for through holes with a diameter of at least 7mm at this component, even though this is not the common norm.

		Standard cylinder			IP65 rating	
	VE	WH	ØВ	VE	WH	ØB
ET_32	13	26	30	40	50	46
ET_50	16	37	40	43	64	62
ET_80	20	46	50	55	81	68
ET_100	20	51	65	60	91	89
ETB125	20	68	90		On request	

Stroke dependent dimensions

			Standard	l cylinder			IP65	rating	1
		C+*	G1+*	G2+*	P+*	C+*	G1+*	G2+*	P+*
ET 22	M05	112.5	140.5	176.7	84.5	115.7	143.7	179.9	84.5
ET_32	M10	112.5	140.5	176.7	84.5	115.7	143.7	179.9	84.5
ETV32	M05	100.0	138.0	163.2	66.5	103.2	141.2	166.4	66.5
ETV32	M10	102.8	140.8	166.0	69.3	106.0	144.0	169.2	69.3
	M05	128.4	160.4	199.5	96.4	131.6	163.6	202.7	96.4
ET_50	M10	131.4	163.4	202.5	99.4	134.6	166.6	205.7	99.4
	M16	135.4	167.4	206.5	103.4	138.6	170.6	209.7	103.4
	M05	129.5	173.0	228.3	86	132.7	176.2	231.5	86
ET_80	M10	148.1	191.6	246.9	104.6	151.3	194.8	250.1	104.6
	M25	154.9	198.4	253.7	111.4	158.1	201.6	256.9	111.4
	M05	201.5	259.7	335.5	132.1	204.7	262.9	338.7	132.1
ETB100	M10	221.3	279.5	355.3	151.9	224.5	282.7	358.5	151.9
	M20	239.3	297.5	373.3	169.9	242.5	300.7	376.5	169.9
	M40	249.4	307.6	383.4	179.9	252.6	310.8	386.6	179.9
ETV100	M05	222.3	290.2	366	143.1	225.5	293.4	369.2	143.1
	M10	263.1	331	406.8	183.9	266.3	334.2	410.0	183.9
	M05	207.0	283.9	411.0	140.0				
ET125	M10	237.0	313.9	441.0	170.0	0			
E1125	M20	237.0	313.9	441.0	170.0	On request			
	M50	260.0	336.9	464.0	193.0				

+* =Measure + length of desired stroke **Definition of stroke** (see page 16)

Definition of stroke, travel and safety travel

Stroke: The stroke to be indicated in the order code is the maximum possible stroke between the internal end stops.
 Working stroke: The travel is the distance which you need to move in your application. It is always shorter than the stroke.
 Safety travels
 S1, S2: The safety travels are required to slow down the cylinder after it has passed a limit switch (Emergency stop, in order to avoid contact with the mechanical limit stops). For vertical mounting, S1 and S2 must in general be different. The minimum safety travels given in the table are, according to experience, sufficient for most applications. With demanding applications (great

table are, according to experience, sufficient for most applications. With demanding applications (great masses and high dynamic), the safety travel has to be calculated and enlarged accordingly (dimensioning on demand).

Minimum safety travels

Cylinder	ET_	32		ET_50			ET_80			ET_	100		ETB125					
Туре	M05	M10 M05 M10 M16				M05	M10	M25	M05	M10	M20	M40	M05	M10	M20	M50		
S1 = S2	10	20	10	20	30	10	20	30	10	20	25	30	10	20	25	40		

Recommended minimum safety travels with horizontal mounting position: Calculated for a load of up to 50% of the maximum permissible thrust/traction force and for a speed of up to 50% of the maximum permissible speed and under the condition that the drive is able to generate a corresponding braking torque.

Help for the order statement: Stroke ≥ working stroke + 10mm + S1 + S2

This formula takes a distance between the software end limit and a limit switch of 5mm per side into consideration. The length of this distance depends on the closed loop controller used.

Possible motor mounting options

Motor / gear mounting, transmission ratios, dimensions

The "L" or "P" stands for the motor mounting L = direct (in-line), P = all parallel or reverse motor positions;"**A**" stands for a ratio of i = 1:1, "**B**" for i =1.5:1, "**D**" for i = 2:1, **Z**" for i = 1:1.5.

	prepared for motor / gear mounting	m	M ethod,	ounti /trans ratio	<u> </u>	ion	Order code			nsions in		
		LA	PA	PB	PD	PZ		direct L1	direct L2	parallel PD3(1)	parallel PD4	parallel PD5
ET	for stepper motor mounting											
S32	NEMA 23 (SY56)	x	x			x	20	44.25	57.15	54.00	5.75	57.15
0.50	NEMA 23 (SY56)	х	x	x	x		20	53.50	63.50	75.00	5.75	57.15
S50	NEMA 34 (SY83)	х	x	x			30	68.25	82.55	82.50	7.75	82.55
S80	NEMA 34 (SY83)	х	х	x	х		30	79.50	95.25	95.00	7.75	86.36
300	NEMA 42 (SY107)	х	x	x			40	89.26	107.95	105.00	7.75	107.95
ET	for servo motor / gear mounting											
B32	NEMA 23 with 9.525mm shaft	x	x			x	20	61.10	57.15	54.00	5.75	57.15
V32	(i.e. SM23 with long shaft)											
	MH56-B5/9 or SMH60-B8/9	х	x			х	47*	49.80	57.15	54.00	5.75	57.15
	NEMA 23 with 9.525mm shaft (i.e. SM23 with long shaft)	x	x	x	x		20	66.50	63.50	75.00	5.75	57.15
	NEMA 34 with 1/2 inch shaft	х	x				30	68.25	82.55	82.50	7.75	82.55
B50	NEMA 34 with 14mm shaft		x				37	68.25	82.55	82.50	7.75	82.55
630	MH70-B05/11 or SMH60-B05/11	х	x				57	59.00	69.80	82.50	8.74	76.20
	SMH82-B08/14	х	x				67	65.60	95.25	82.50	8.56	95.25
	P3 (planetary gear)	х					P3	83.00	72.00			
	PE3 (planetary gear)	х	x				N6	69.50	90.00	82.5	2.00	72.15
	NEMA 34 with 1/2 inch shaft (BE34)	х	x	x	х		30	87.50	95.00	95.00	7.75	86.36
	NEMA 34 with 14mm shaft (MD3450/3475)	x	х	x	х		37	87.50	95.00	95.00	7.75	86.36
	SMH82-B8/14	х	x	x	х		67	85.75	95.25	95.00	10.75	95.25
Baa	SMH82-B5/19 / SMH100-B5/19 / MH105-B5/19	х	x	х			77	99.00	107.95	107.50	10.00	107.95
B80	MH105-B9/19	х	x	х			J4	95.75	96.00	97.50	10.75	95.25
	P3 (planetary gear)	х	x				P3	105.25	95.00	95.00	19.00	82.00
	P4 (planetary gear)	х	x				P4	111.50	95.00	104.00	31.00	80.00
	PE3 (planetary gear)	х	x				N6	89.50	80.00	95.00	10.00	80.00
	PE4 (planetary gear)	x	X				N8	94.50	80.00	95.00	10.00	80.00
	SMH82-B5/19 / SMH100-B5/19 / MH105-B5/19	X	x				77	107.50	107.95	140.00	11.50	107.95 142.88
B100	MH145-B5/24 or SMH142-B5/24 MH105-B6/24 or SMH115-B7/24	x	x				87	115.34 112.50	142.87 114.30	140.00 140.00	20.00 17.00	142.88
V100	HJ155	x x	x x				J5	112.50	114.50	140.00	20.00	142.88
	P4 (planetary gear)	x	x				J6 P4	125.00	107.95	140.00	18.00	98.00
	P5 (planetary gear)	x	x				P4 P5	125.00	120.65	140.00	40.00	114.00
	MH145-B5/24 or SMH142-B5/24	x	x				87	155.00	139.70	184.00	22.50	150.00
	HJ155	x	x				87 J6	155.00	140.00	184.00	28.50	155.00
B125	MH205-B5/38	х	x				J7	188.00	205.00	184.00	27.50	205.00
	P5 (planetary gear)	х	x				P5	195.00	139.70	184.00	32.50	150.00
	P7 (planetary gear)	x	x				P7	220.00	145.00	184.00	55.00	150.00

(1): PD3 = distance between spindle and motor shaft. Tolerance: ± 3mm, as the toothed belt is tensioned over this distance!

*: SMH60 with encoder option (A6/7) cannot be connected to the ETB32 with parallel mounting, use option C6/7 if necessary!

Accessories

Configuration of the thrust rod

External thread

	Externa	External thread (delivery standard)										
				St	andard cylind	er		IP65 rating				
	Α	KK	ØMM VE WH ØB VE WH ØB									
ET_32	22	M10x1.25	18	13	26	30	40	50	46			
ET_50	32	M16x1.5	25	16	37	40	43	64	62			
ET_80	40	M20x1.5	35	20	46	50	55	81	68			
ET_100	54	M27x2.0	50	20	51	65	60	91	89			
ETB125	71.5	M36x2.0	70	70 20 68 90								

Internal thread

	Interna	Internal thread										
				St	andard cylind	er		IP65 rating				
	Α	KK	ØMM	VE	WH	ØВ	VE	WH	ØВ			
ET_32	14	M10x1.25	18	13	32	30	40	56	46			
ET_50	24	M16x1.5	25	16	50	40	43	77	62			
ET_80	29	M20x1.5	35	20	59	50	55	94	68			
ET_100	40	M27x2.0	50	20	73	65	60	113	89			
ETB125	50	M36x2.0	70	20	99.5	90	-	-	-			

Rod clevis

	Order no.	KK	CL	CN	1	LE	CE	AV	ER	ØCK (h11/E9)	K	L
ET_32	4309	M10x1.25	26.0	10.2	+0.13 -0.05	20	40	20	14	10	17	5
ET_50	4312	M16x1.5	39.0	16.2	+0.13 -0.05	32	64	32	22	16	24	8
ET_80	4314	M20x1.5	52.5	20.1	+0.02 -0.0	40	80	40	30	20	30	10
ET_100	4331	M27x2.0	72.0	30.0	+0.6 -0.2	54	110	56	35	30	41	10
ETB125	413-042-195	M36x2.0	83.0	35	5	72	144	72	50	35	55	14

Listed in the order code of the cylinder, the order number is only for ordering spare parts.

Stated in mm

Spherical rod eye

Listed in the order code of the cylinder, the order number is only for ordering spare parts.

Flexible coupling

(2): Axial offset A2: Thread depth=E

For mounting at the extremity of the thrust rod

- Balances misalignments ٠
- Enlarges the mounting tolerance ٠
- Simplifies the cylinder mounting ٠
- Increases the service life of the cylinder guidings

L

5

8

10

- Compensates the offset between components and • relieves the guiding from lateral force influences
- The traction/thrust force bearing capacity is • maintained

	Order no.	A1	A2	В	С	ØD	E	F	G	Н	J	K
ET_32	LC32-1010	M10x1.25	M10x1.25	40	51	19	19	16	13	16	13	26
ET_50	LC50-1616	M16x1.5	M16x1.5	54	59	32	29	25	22	29	14	33
ET_80	LC80-2020	M20x1.5	M20x1.5	54	59	32	29	25	22	29	14	33
ET_100	LC100-2727	M27x2.0	M27x2.0	89	102	51	51	38	32	43	19	64
ETB125	LC125-3636	M36x2.0	M36x2.0	102	112	57	57	44.5	38	49.3	22	70

Not listed in the cylinder order code, please order separately.

Mounting options

Rod guiding

The outrigger bearing unit performs the following tasks:

- ⇒ Rotation protection for higher torques
- ⇒ Absorption of lateral forces
- ⇒ Relieves the cylinder of lateral forces

The additional stability and precision is ensured by 2 hardened steel guiding rods in connection with 4 linear ball bearings.

Not available for ETB125, not possible with IP65 rating

Rigidity of the cylinder with outrigger bearing

a, b, ...: deflection

x: Deflecion with maximum load

Deflection

Extended Length [mm]

1: Stroke dx: deflection valid for F_z or F_y M: Torsional load

Extended Length [mm]

Dimensions of ET outrigger bearing

	ET_32	ET_50	ET_80	ET_100
Model	32-2800R	50-2800R	80-2800R	100-2800R
A1	50	70	105	130
A2	97	137	189	213
B1	45	63	100	120
B2	90	130	180	200
B3	78	100	130	150
B4	32.5	46.5	72	89
B5	50	72	106	131
B6	4	19	21	24.5
B7	12	15	20	20
B8	61	85	130	150
ØC1	12	20	25	25
C2	73.5	103.5	147	171.5
C3	50	70	105	130
ØD1	6.6	9	11	11
ØD2	11	14	17	17
ØD5	M6	M8	M10	M10
E (Depth)	10	10	10	10
E1 (Depth)	12	16	20	20
E2 (Depth)	7	9	11	11
ØF1	30	40	50	65
G1	17	27	32	55
H1	81	119	166	190
H2	11.7	4.2	15	20.5
L1+*	150	192	247	290
L2	120	150	200	220
L3+*	15	24	24	24
L4	71	79	113	128
L5	64	89	110	138
N1	17	24	30	38
P1	36	42	50	49
P2	31	44	52	51
P3	40	50	70	70
Mass	970g	2560g	6530g	8760g
Additional mass / 100mm stroke	175g	495g	770g	770g

+* =Measure + length of desired stroke **Definition of stroke** (see page 16)

N1: Hexagon head, outrigger bearing not possible with IP65 rating! For the ET_100, a larger coupling piece is used (concerns G1 and N1)

For the ET_80 and the ET_100, the standard pneumatic outrigger bearing modules cannot be used, ØF1 must be bored up to 50 mm for ET_80 (from 45mm) and to 65mm for ET_100 (from 55mm).

The hole pattern is suitable for Parker pneumatic modules, e.g. grippers and pivoting units

Centre trunnion mounting

	C+*	UW	ØTD**	R	TL***	TM	ØAC
ET_32	stroke_dependent (see page 15)	46.5	12	0.8	12	50	18
ET_50	stroke_dependent (see page 15)	63.5	16	0.8	16	75	25
ET_80	stroke_dependent (see page 15)	95.3	20	0.8	20	110	30
ET_100	stroke_dependent (see page 15)	114.3	25	1.6	25	132.5	40
ETB125	stroke_dependent (see page 15)	139.7	32	2.0	32	149.7	45

+* =Measure + length of desired stroke **Definition of stroke** (see page 16)

**: ØTD according to ISO tolerance field h7

***: TL according to ISO tolerance field e9

Rear eye mounting

Only for parallel / reverse drive

	Order no.	G2+*	EW	ØCD	MR (H9)	FL ±0.2
ET_32	32-2800C	stroke_dependent (see page 15)	26	10	10	22
ET_50	50-2800C	stroke_dependent (see page 15)	32	12	12	27
ET_80	80-2800C	stroke_dependent (see page 15)	50	16	16	36
ET_100	100-2800C	stroke_dependent (see page 15)	60	20	20	41
ETB125	413-042420	stroke_dependent (see page 15)	70	25	25	50

+* =Measure + length of desired stroke **Definition of stroke** (see page 16)

Listed in the order code of the cylinder, the order number is only for ordering spare parts.

Rear clevis

	Order no.	G2+*	UB (h14)	CB (H14)	ØCD (H9)	MR	L	FL ±0.2
ET_32	32-2800B	stroke_dependent (see page 15)	45	26	10	10	13	22
ET_50	50-2800B	stroke_dependent (see page 15)	60	32	12	12	16	27
ET_80	80-2800B	stroke_dependent (see page 15)	90	50	16	16	22	36
ET_100	100-2800B	stroke_dependent (see page 15)	110	60	20	20	27	41
ETB125	125-2800B	<pre>stroke_dependent (see page 15)</pre>	130	70	25	25	30	50

+* =Measure + length of desired stroke **Definition of stroke** (see page 16)

Listed in the order code of the cylinder, the order number is only for ordering spare parts.

Bearing block

Counterpiece of the rear clevis

	Order no.	А	B (JS15)	С	D	E (JS14)	F (JS14)	Н	ØJ (H13)	ØK (H9)	М	R1
ET_32	32-2800T	51	32	31	25.5	21	38	18	6.6	10	8	10
ET_50	50-2800T	65	45	45	31.0	33	50	30	9.0	12	12	13
ET_80	80-2800T	86	63	60	49.0	47	66	40	11.0	16	14	15
ET_100	100-2800T	96	71	70	59.0	55	76	50	11.0	20	15	21
ETB125	125-2800T	124	90	90	69.0	70	94	60	14.0	25	20	25

Not listed in the cylinder order code, please order separately.

Installation flanges

Front plate not possible with IP65 rating

Rear plate only for parallel / reverse drive

	Order no. (1 piece)	G2+*	UF	Е	TF	ØFB	R	W	MF	ØB	S
ET_32	32-2800A	<pre>stroke_dependent (see page 15)</pre>	80	48	64	7	32	16	10	30	3
ET_50	50-2800A	<pre>stroke_dependent (see page 15)</pre>	110	65	90	9	45	25	12	40	4
ET_80	80-2800A	<pre>stroke_dependent (see page 15)</pre>	150	95	126	12	63	30	16	50	4
ET_100	100-2800A	<pre>stroke_dependent (see page 15)</pre>	180	110	150	14	75	35	16	65	4
ETB125	ET125MTG-JBSC	stroke_dependent (see page 15)	205	140	180	17	90	53	20	90	0

+* =Measure + length of desired stroke **Definition of stroke** (see page 16)

Listed in the order code of the cylinder, the order number is only for ordering spare parts.

Foot mounting

1 001 110	anning									
	<u>e</u>					G.	AH			
Only for paral	lel / reverse drive			_			+			1
Front foot mo	unting plate not poss	ible with IP65 rating. AO AU	G	2 + *		ØA	В	Т	R í	ł
				<u> </u>		_► _► \4			N	
	Order no. (1 piece)	G2+*	AH	AT	TR	ØAB (H14)	AO	AU	TW	
ET_32	32-2800D	stroke_dependent (see page 15)	32	3	32	7	8	24	48	
ET_50	50-2800D	stroke_dependent (see page 15)	45	3	45	9	12	32	65	
ET_80	80-2800D	stroke_dependent (see page 15)	63	4	63	12	15	41	95	
ET_100	100-2800D	stroke_dependent (see page 15)	71	6.5	75	14	17	41	115	
ETB125	ET125MTG-BBSC	stroke_dependent (see page 15)	90	8.3	90	17	25	45	140	

+* =Measure + length of desired stroke **Definition of stroke** (see page 16) Listed in the order code of the cylinder, the order number is only for ordering spare parts.

Mounting flanges

ET100E14

ET125MTG-GBSC

ET_100

ETB125

Dimensions (see page 15)

150

175

185

210

13

17

50

70 20

12 27.5

35

Dimensions (see page 15) +* =Measure + length of desired stroke **Definition of stroke** (see page 16)

Listed in the order code of the cylinder, the order number is only for ordering spare parts.

stroke_dependent (see page 15)

stroke_dependent (see page 15)

Initiators / limit switches

The cylinder profile has two t-grooves for the mounting of initiators.

The initiators can be freely positioned along the profile (access to the lubricating hole must be granted).

ET_100 and ETB125 have these longitudinal grooves on all sides,

ET_32, ET_50 and ET_80 only on one side of the profile.

The permanent magnet integrated into the spindle nut, actuates the initiators.

The following initiator types are available for the ET cylinder series:

⇒ Hall effect sensor

- Normally closed contact or normally open contact
- electronic
- LED display
- medium costs
- long life

S: Switch / X: Load

	Hall effect sensors												
Туре	Function	LED	Logic	Cables	Switching current	Electric current drain	Utilities	Switching frequency					
SMH-1P*	Normally open contact	Green	PNP										
SMH-1N*	Normally open contact	Red	NPN	1.5m	max.150mA	7mA at 12VDC	5 - 30VDC	max.500Hz					
SMC-1P*	Normally closed contact	Yellow	PNP	1.5/11	maxiisoniiv	14mA at 24VDC	5 50000	11102.500112					
SMC-1N*	Normally closed contact	White/Red	NPN										

*If you require only 150mm of cable length instead of 1.5m, please add a "C" to you order code. Example: SMH-1PC. Use only SMC-1P with COMPAX.

Initiator / limit switch - mounting

No initiator is to be mounted in the area of the lubrication hole. If you should need an initiator at this position due to your application, please contact us.

(1):	Lubrication bore	

S1, S2: Safety travels (see page 16)

A, B: Switching distances

Stated in mm

Switching distance [mm]	A: on the thrust rod side	B: on the motor side
ET_32M05	15	66
ET_32M10	15	66
ET_50M05	19	83
ET_50M10	19	86
ET_50M16	19	90
ET_80M05	23	68
ET_80M10	23	87
ET_80M25	23	94
ETB100M05	15	101
ETB100M10	15	120
ETB100M20	15	138
ETB100M40	15	148
ETV100M05	15	121
ETV100M10	15	162
ETB125M05	69	72
ETB125M10	69	102
ETB125M20	69	102
ETB125M50	69	125

Order code

ET series	Order exam	iple: ETB50M0	15PA67FMA600A			ET	В	50	M05	Р	А
Design											
	MA motors (ET32 to 80))				S	-			
	rs and gears			A motors			В	-			-
(ET32 to 12	5)						Б				
like version (only ET328	B, but with ir ET100)	ncreased lit	fetime				V				
Model /siz	e										
								32 50 80 100 125			
Screw pitc	h Mxx in m	m									
ET_32	ET_50	ET_80	ETB100	ETV100	ET_125						
Х	Х	Х	Х	Х	Х				M05		
Х	Х	Х	Х	Х	Х				M10		
	Х								M16		
			Х		Х				M20		
		Х							M25		
			Х						M40		
				_	Х				M50		
	inting posit	ion									
direct (inline										L	
Parallel			P	•						Р	
			Q c	M						М	
										N Q	
a settin a sea lla l				_							
antiparallel										R S	
		u	V c	S						Т	
			Т							V	
with parallel mo	tor mounting, the	e motor could,	depending on th	ne profile orienta	ation,						
	e initiators (ET_3			ation hole (see	page 8)						
	ion ratio (cor										
	-line, parallel			G. 0	F. F0)						A
	arallel, antipa arallel, antipa		irives with shaft	Ø>9mm, not El	1_50)						B D
	arallel, antipa		T_32)								Z

67	F	м	А	600	A		Protection class
					Α	company internal designation	For IP65, contact the supplier in order to discuss
					IP	IP65 rating (not for ETB125)	conditions of use and environment.
							Stroke in mm
						ET_32: 50 - 0750	Definition of stroke (see page 15 – definition of
						ET_50: 50 - 1000 ET_80: 100 1500	stroke)
						ET_80: 100 - 1500 ET_100: 100 - 1500	
						ETB125: 100 - 2400	
							Housing orientation
			Α			3 hrs (not with motor position M)	The profile orientation (see page 8) does also define
			B C			6 hrs (not with motor position N)	the position of the lubrication hole.
			C			9 hrs (not with motor position Q) 12 hrs/standard (not with motor position P)	
	-] 1					Thrust rod
		М				External thread (Standard metrical)	*not for ETB125 and not with IP65
		F				Internal thread	
		C				Rod clevis	
		S R				Spherical rod eye Outrigger bearing*	
	-	IN IN					Mounting type
	В					Foot mounting*	Stainless versions of the mounting options on
	C					Rear clevis mounting*	request
	D					Centre trunnion mounting	*not for motor position L
	E					Rear eye mounting* Standard (Thread at cylinder profile)	** not with IP65
	G					Mounting flanges	
	Ĥ					Rear plate*	
	J					Front plate**	
	N					Front- and rear plate*	
	Х					Customer specific	Motor mounting options (combinations
		tch ameter	Shaft	naft ngth	ote	Customer specific	Motor mounting options (combinations (see page 17))
	Fitting edge	pitch diameter	ØShaft	Shaft length	Note		(see page 17))
20	Fitting edge 38.1	66.6	6.35	20.8	Note	NEMA 23	
30	Eitting Gedge 38.1 73	66.6 98.42	6.35 9.52	20.8 31.5	Note		(see page 17))
	Fitting edge 38.1	66.6	6.35	20.8	왕 원 M5 bore	NEMA 23 NEMA 34	(see page 17)) prepared for NEMA standard motors
30 40	وبي بنټي 38.1 73 55.54	66.6 98.42 125.5	6.35 9.52 15.87	20.8 31.5 50		NEMA 23 NEMA 34 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with ½inch shaft	(see page 17))
30 40 20	لینجان 38.1 73 55.54 38.1	66.6 98.42 125.5 66.6	6.35 9.52 15.87 9.525	20.8 31.5 50 20.8		NEMA 23 NEMA 34 NEMA 42 NEMA 23 with 9.525mm shaft	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special
30 40 20 30 37	55.54 38.1 73 55.54 38.1 73 73	66.6 98.42 125.5 66.6 98.42 98.42	6.35 9.52 15.87 9.525 12.7 14	20.8 31.5 50 20.8 30.23 30		NEMA 23 NEMA 34 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with ½inch shaft NEMA 34 with 14mm shaft	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors
30 40 20 30 37 47	0 38.1 73 55.54 38.1 73 73 73	66.6 98.42 125.5 66.6 98.42 98.42 98.42	6.35 9.52 15.87 9.525 12.7 14 9	20.8 31.5 50 20.8 30.23 30		NEMA 23 NEMA 34 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with ½inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted
30 40 20 30 37 47 57	55.54 38.1 73 55.54 38.1 73 73	66.6 98.42 125.5 66.6 98.42 98.42	6.35 9.52 15.87 9.525 12.7 14 9 11	20.8 31.5 50 20.8 30.23 30		NEMA 23 NEMA 34 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with ½inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted
30 40 20 30 37 47 57 67	Bit Bit 38.1 73 55.54 38.1 73 73 40 60 80 80	66.6 98.42 125.5 66.6 98.42 98.42 98.42 63 75 100	6.35 9.52 15.87 9.525 12.7 14 9 11 14	20.8 31.5 50 20.8 30.23 30 20 20 23 30		NEMA 23 NEMA 34 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with ½inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11 SMH82-B08/14	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted
30 40 20 30 37 47 57 67 77	200 000 38.1 73 55.54 38.1 73 73 73 40 60 80 95	66.6 98.42 125.5 66.6 98.42 98.42 98.42 63 75 100 115	6.35 9.52 15.87 9.525 12.7 14 9 11 14 14	20.8 31.5 50 20.8 30.23 30 20 20 23 30 40		NEMA 23 NEMA 34 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with 1/2inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11 SMH82-B08/14 SMH82-, SMH100- or, MH105-B5/19	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted
30 40 20 30 37 47 57 67 77 87	00000000000000000000000000000000000000	66.6 98.42 125.5 66.6 98.42 98.42 63 75 100 115 165	6.35 9.52 15.87 9.525 12.7 14 9 11 14 19 24	20.8 31.5 50 20.8 30.23 30 20 20 23 30 40 50		NEMA 23 NEMA 34 NEMA 34 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with ½inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11 SMH82-B08/14 SMH82-, SMH100- or, MH105-B5/19 MH145-B5/24, SMH142-B5/24	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted
30 40 20 30 37 47 57 67 77 87 34	200 950 38.1 73 55.54 38.1 73 73 73 40 60 80 95 130 80	66.6 98.42 125.5 66.6 98.42 98.42 98.42 63 75 100 115 165 100	6.35 9.52 15.87 9.525 12.7 14 9 9 11 14 19 24 19	20.8 31.5 50 20.8 30.23 30 20 20 23 30 40 50 40		NEMA 23 NEMA 34 NEMA 42 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with ½inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11 SMH82-B08/14 SMH82-, SMH100- or, MH105-B5/19 MH145-B5/24, SMH142-B5/24 MH105-B9/19	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted
30 40 20 30 37 47 57 67 77 87 34 35	20 38.1 73 55.54 38.1 73 73 40 60 80 95 130 80 110	66.6 98.42 125.5 66.6 98.42 98.42 98.42 75 100 115 165 100 130	6.35 9.52 15.87 9.525 12.7 14 9 11 14 19 24 19 24	20.8 31.5 50 20.8 30.23 30 20 23 30 20 23 30 40 50 40 50		NEMA 23 NEMA 34 NEMA 42 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with 1/2 inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11 SMH82-B08/14 SMH82-, SMH100- or, MH105-B5/19 MH145-B5/24, SMH100- or, MH105-B5/19 MH105-B9/19 MH105-B6/24, SMH115-B7/24	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted
30 40 20 30 37 47 57 67 77 87 34 35 36	B B 38.1 73 55.54 38.1 73 73 40 60 80 95 130 80 110 130	66.6 98.42 125.5 66.6 98.42 98.42 98.42 63 75 100 115 165 100 1130 165	6.35 9.52 15.87 9.525 12.7 14 9 11 14 19 24 19 24 19 24 32	20.8 31.5 50 20.8 30.23 30 20 23 30 40 50 40 50 40 50		NEMA 23 NEMA 34 NEMA 42 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with 1/2inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11 SMH82-B08/14 SMH82-, SMH100- or, MH105-B5/19 MH145-B5/24, SMH100- or, MH105-B5/19 MH105-B9/19 MH105-B6/24 ,SMH115-B7/24 HJ155	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted
30 40 20 30 37 47 57 67 77 87 34 35 34 35 36 37	⁶ ⁶ ⁶ ⁷	66.6 98.42 125.5 66.6 98.42 98.42 98.42 63 75 100 115 165 100 130 165 215	6.35 9.52 15.87 9.525 12.7 14 9 11 14 19 24 19 24 32 38	20.8 31.5 50 20.8 30.23 30 20 23 30 20 23 30 40 50 40 50 50 58 8 80		NEMA 23 NEMA 34 NEMA 42 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with 1/2inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11 SMH82-B08/14 SMH82-, SMH100- or, MH105-B5/19 MH145-B5/24, SMH100- or, MH105-B5/19 MH105-B9/19 MH105-B9/19 MH105-B6/24 ,SMH115-B7/24 HJ155 MH205-B5/38	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted parallelly on ET_32.
30 40 20 30 37 47 57 67 77 87 34 34 35 36 37 93	60 95 38.1 73 55.54 38.1 73 73 73 40 60 80 95 130 80 110 130 180 60	66.6 98.42 125.5 66.6 98.42 98.42 98.42 75 100 115 165 100 115 165 100 130 165 215	6.35 9.52 15.87 9.525 12.7 14 9 9 11 14 19 24 19 24 19 24 32 38	20.8 31.5 50 20.8 30.23 30 20 20 23 30 40 50 50 50 58 80 48		NEMA 23 NEMA 34 NEMA 42 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with 1/2inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11 SMH82-B08/14 SMH82-B08/14 SMH82-, SMH100- or, MH105-B5/19 MH145-B5/24, SMH100- or, MH105-B5/19 MH105-B6/24, SMH142-B5/24 MH105-B6/24, SMH115-B7/24 HJ155 MH205-B5/38 P3	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted parallelly on ET_32. prepared for
30 40 20 30 37 47 57 67 77 87 34 34 35 36 37 93 P3 P4	E B 38.1 73 55.54 38.1 73 73 40 60 80 95 130 80 110 130 180 60 60 70	66.6 98.42 125.5 66.6 98.42 98.42 98.42 75 100 115 165 100 115 165 100 130 165 215 75 85	6.35 9.52 15.87 9.525 12.7 14 9 9 11 14 19 24 19 24 32 38 16 22	20.8 31.5 50 20.8 30.23 30 20 23 30 20 23 30 40 50 40 50 58 80 48 56		NEMA 23 NEMA 34 NEMA 42 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with 1/2inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11 SMH82-B08/14 SMH82-, SMH100- or, MH105-B5/19 MH105-B5/24, SMH142-B5/24 MH105-B9/19 MH105-B6/24, SMH115-B7/24 HJ155 MH205-B5/38 P3 P4	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted parallelly on ET_32.
30 40 20 30 37 47 57 67 77 87 34 35 34 35 36 37 P3 P3 P4 P5	E B 38.1 73 55.54 38.1 73 73 40 60 80 95 130 80 110 130 180 60 70 90	66.6 98.42 125.5 66.6 98.42 98.42 98.42 100 115 165 100 115 165 100 130 165 215 75 85 120	6.35 9.52 15.87 9.525 12.7 14 9 11 14 19 24 19 24 19 24 19 24 38 238 16 22 38	20.8 31.5 50 20.8 30.23 30 20 23 30 20 23 30 40 50 40 50 58 80 48 56 88		NEMA 23 NEMA 34 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with 1/2inch shaft NEMA 34 with 1/2inch shaft NEMA 34 with 1/4mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11 SMH82-B08/14 SMH82-, SMH100- or, MH105-B5/19 MH145-B5/24, SMH142-B5/24 MH105-B9/19 MH105-B6/24 ,SMH115-B7/24 HJ155 MH205-B5/38 P3 P4 P5	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted parallelly on ET_32. prepared for
30 40 20 30 37 47 57 67 77 87 34 35 34 35 36 37 93 P4 P5 P7	B B 38.1 73 55.54 38.1 73 73 40 60 80 95 130 80 110 130 180 60 90 130 130 180 60 70 90 130	66.6 98.42 125.5 66.6 98.42 98.42 98.42 75 100 115 165 100 115 165 100 130 165 215 75 85 120	6.35 9.52 15.87 9.525 12.7 14 9 11 14 19 24 19 24 19 24 32 38 16 22 38	20.8 31.5 50 20.8 30.23 30 23 30 40 50 40 50 58 80 48 56 88 112	M5 bore	NEMA 23 NEMA 34 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with 1½inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11 SMH82-B08/14 SMH82-, SMH100- or, MH105-B5/19 MH145-B5/24, SMH142-B5/24 MH105-B9/19 MH105-B6/24 ,SMH115-B7/24 HJ155 MH205-B5/38 P3 P4 P5 P7	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted parallelly on ET_32. prepared for
30 40 20 30 37 47 57 67 77 87 34 35 34 35 36 37 93 P3 P3 P3 P4 P5 P7 N6	Bit of the second sec	66.6 98.42 125.5 66.6 98.42 98.42 98.42 75 100 115 165 100 130 165 215 75 85 120 165 52	6.35 9.52 15.87 9.525 12.7 14 9 11 14 19 24 19 24 32 38 16 22 38 16 22 32 40 14	20.8 31.5 50 20.8 30.23 30 20 23 30 40 50 40 50 58 80 48 56 88 112 35		NEMA 23 NEMA 34 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with 1/2inch shaft NEMA 34 with 1/2inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11 SMH82-B08/14 SMH82-, SMH100- or, MH105-B5/19 MH145-B5/24, SMH142-B5/24 MH105-B9/19 MH105-B6/24 ,SMH115-B7/24 HJ155 MH205-B5/38 P3 P4 P5 P7 PE3	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted parallelly on ET_32. prepared for
30 40 20 30 37 47 57 67 77 87 34 35 34 35 36 37 93 P4 P5 P7	B B 38.1 73 55.54 38.1 73 73 40 60 80 95 130 80 110 130 180 60 90 130 130 180 60 70 90 130	66.6 98.42 125.5 66.6 98.42 98.42 98.42 100 115 165 100 115 165 100 130 165 215 75 85 120	6.35 9.52 15.87 9.525 12.7 14 9 11 14 19 24 19 24 19 24 32 38 16 22 38	20.8 31.5 50 20.8 30.23 30 23 30 40 50 40 50 58 80 48 56 88 112	M5 bore	NEMA 23 NEMA 34 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with 1½inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11 SMH82-B08/14 SMH82-, SMH100- or, MH105-B5/19 MH145-B5/24, SMH142-B5/24 MH105-B9/19 MH105-B6/24 ,SMH115-B7/24 HJ155 MH205-B5/38 P3 P4 P5 P7	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted parallelly on ET_32. prepared for planetary gearbox
30 40 20 30 37 47 57 67 77 87 34 35 34 35 36 37 93 P3 P3 P4 P5 P7 N6	Bit of the second sec	66.6 98.42 125.5 66.6 98.42 98.42 98.42 75 100 115 165 100 130 165 215 75 85 120 165 52	6.35 9.52 15.87 9.525 12.7 14 9 11 14 19 24 19 24 32 38 16 22 38 16 22 32 40 14	20.8 31.5 50 20.8 30.23 30 20 23 30 40 50 40 50 58 80 48 56 88 112 35	M5 bore	NEMA 23 NEMA 34 NEMA 42 NEMA 23 with 9.525mm shaft NEMA 34 with 1/2inch shaft NEMA 34 with 1/2inch shaft NEMA 34 with 14mm shaft MH56-B5/9, SMH60-B8/9 MH70-B5/11, SMH60-B5/11 SMH82-B08/14 SMH82-, SMH100- or, MH105-B5/19 MH145-B5/24, SMH142-B5/24 MH105-B9/19 MH105-B6/24 ,SMH115-B7/24 HJ155 MH205-B5/38 P3 P4 P5 P7 PE3	(see page 17)) prepared for NEMA standard motors prepared for metric motors and special NEMA motors (47: SMH60 with encoder A6 / A7cannot be mounted parallelly on ET_32. prepared for

Further information:

www.parker-eme.com/et

We reserve the right to make technical changes. The data correspond to the technical state at the time of printing. © 2007 Parker Hannifin Corporation

Parker Hannifin GmbH & Co. KG **Electromechanical Automation** Robert-Bosch-Straße 22 D-77656 Offenburg, Germany phone +49 (0)781 / 509-0 fax +49 (0)781 / 509-98176 sales.automation@parker.com www.parker-automation.com 192-550011N16

June 2008